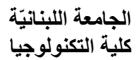
Lebanese University Faculty of Technology

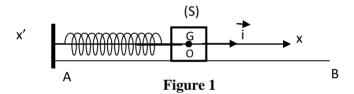


September 15, 2022	Entrance Exam (Engineering)	Duration: 1H30	
	Physics		

Exercise 1	(13 points)

Consider a mechanical oscillator constituted of a spring, of negligible mass, and of un-joined loops of stiffness k and a solid (S) of mass m = 0.1 kg.

The spring, placed horizontally, is fixed from one of its extremities to a fixed support and (S) is attached to the other extremity. (S) may slide without friction on a horizontal rail AB and its center of inertia G can move along a horizontal axis x'Ox. At equilibrium, G coincides with the origin O of the axis x'x (figure 1).



The solid (S) is displaced from its equilibrium position by a distance $x_0 = \overline{OG}_0$ and we give it, at the instant $t_0 = 0$, in the positive direction an initial velocity $\vec{V}_0 = V_0 \vec{i}$. Thus, (S) performs mechanical oscillations along x'Ox.

Part I - Theoretical study

At the instant t, the abscissa of G is $x = \overline{OG}$ and the algebraic measure of its velocity is $V = \frac{dx}{dt}$.

Take the horizontal plane passing through G as a reference level of gravitational potential energy.

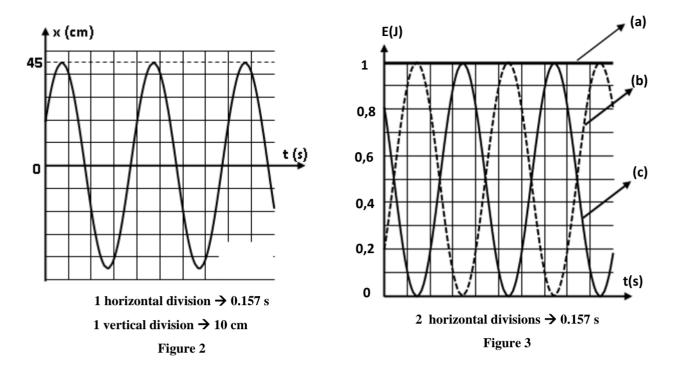
- 1) Write, at an instant t, the expression of the mechanical energy ME of the system (oscillator, Earth) interms of m, x, k and v.
- 2) Establish the second order differential equation in x that describes the motion of G.
- 3) The solution of this differential equation has the form: $x = X_m \sin(\frac{2\pi}{T_0}t + \varphi)$, where X_m , T_0 and φ are

constants. Determine the expression of the proper period T_0 in terms of m and k.

Part II - Graphical study of the motion

An appropriate device allows to obtain the variations with respect to time:

- of the abscissa x of G (figure 2);
- of the kinetic energy KE, of the elastic potential energy PE_e and of the mechanical energy ME of the system (oscillator, Earth) (figure 3).



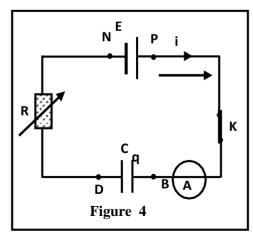
- 4) Referring to figure 2, indicate the value of:
 - a) the initial abscissa x₀;
 - b) the amplitude X_m;
 - c) the period T_0 .
- 5) Determine the values of k and φ .
- 6) The curves (a), (b), and (c) of figure 3 represent the variations of the energies of the system (oscillator, Earth) as a function of time. Using this figure:
 - a) identify, with justification, the energy represented by each curve;
 - b) Determine the value of the initial velocity v_0 .

Exercise 2	(11 points)

The aim of this exercise is to determine the capacitance C of a capacitor. We set-up the series circuit of the figure 4.

This circuit includes:

- an ideal battery of electromotive force E = 10 V;
- a rheostat of resistance R;
- a capacitor of capacitance C;
- an ammeter (A) of negligible resistance;
- a switch K.



Initially the capacitor is uncharged. We close the switch K at the instant $t_0 = 0$. At an instant t, plate B of the capacitor carries a charge q and the circuit carries a current i as shown in the figure 4.

- 1) Write the expression of i in terms of C and u_C , where $u_C = u_{BD}$ is the voltage across the capacitor.
- 2) Establish the differential equation that governs the variation of u_c .
- 3) The solution of this differential equation is of the form: $u_C = a + b e^{\frac{-t}{\tau}}$. Determine the expressions of the constants a, b and τ in terms of E, R and C.
- 4) Deduce that the expression of the current is: $i = \frac{E}{R} e^{\frac{-t}{RC}}$.
- 5) The ammeter (A) indicates a value $I_0 = 5$ mA at $t_0 = 0$. Deduce the value of R.
- 6) Write the expression of $u_R = u_{DN}$ in terms of E, R, C and t.
- 7) At an instant $t = t_1$, the voltage across the capacitor is $u_C = u_R$.
 - **a**) Show that $t_1 = RC \ell n2$.
 - **b**) Calculate the value of C knowing that $t_1 = 1.4$ ms.

Exercise 3		

A homogeneous metallic rod MN of length ℓ , slides on two horizontal and parallel metallic rails AA' and EE' at a constant velocity \vec{V} (figure 5). During its sliding, the rod remains perpendicular to the rails and its center of mass G moves along the axis Ox.

At the instant $t_0 = 0$, G is at O, the origin of abscissa. At an instant t, the abscissa of G is $x = \overline{OG}$ and $V = \frac{dx}{dt}$ is the algebraic value of its velocity. The whole set-up formed of the rod and the rails is put within a uniform magnetic field \vec{B} perpendicular to the plane of the horizontal rails (figure 5).

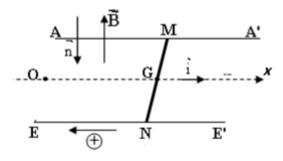


Figure 5

- Determine, at the instant t, the expression of the magnetic flux crossing the surface AMNE in terms of B, l and x, taking into consideration the chosen arbitrary positive direction on figure 5.
- 2) Explain the existence of an induced e.m.f e across the ends M and N of the rod.
- 3) Determine the expression of the induced e.m.f e in terms of B, ℓ and v.
- 4) No current would pass in the rod. Why?
- 5) Deduce the polarity of the points M and N of the rod and give the expression of the voltage u_{NM} in terms of e.

(6 points)