Lebanese University Faculty of Technology

September-15- 2021Entrance Exam
(Engineering)Duration: 1H30Physics Exam

Exercise 1	(10 points)

Consider a small trolley (C) of mass m = 300 g, attached to one extremity of a horizontal spring (R); of negligible mass, and of un-jointed loops of stiffness k = 15 N/m; the other extremity of the spring is attached to a fixed support (A) (figure 1). The trolley (C) may slide without friction on a horizontal rail and its center of inertia G can move along the horizontal axis x'Ox.

At the instant $t_0 = 0$, (G) is initially in its equilibrium position O, at this instant (C) is launched, at the instant $t_0 = 0$, with an initial velocity $\vec{V}\vec{0} = -V_0\vec{i}$ (V₀ > 0). (C) then oscillates without friction with a proper angular frequency ω_0 .

At an instant t, the abscissa of G is $x = \overline{OG}$ and the algebraic measure of its velocity is $v = \frac{dx}{dt}$.

The horizontal plane passing through G is taken as a reference level of gravitational potential energy.

- 1) Write, at an instant t, the expression of the mechanical energy of the system [(C), (R), Earth] in terms of m, k, x and v.
- 2) Derive the second order differential equation in x that describes the motion of G.
- 3) The solution of this differential equation is of the form $x = -X_m \sin (\omega_0 t)$, where X_m is a positive constant.
 - a) Determine the expression of ω_0 in terms of k and m.
 - **b**) Deduce the value of the proper period T_0 .
- 4) Determine the expression of the amplitude X_m in terms of V_0 , k and m.

Exercise 2

(11 points)

Consider the circuit of figure 2. This circuit is formed of a function generator (LFG) delivering across its terminals an alternating sinusoidal voltage of frequency f, a coil of inductance L = 0.05 H and of negligible resistance, a resistor of resistance R = 10 K Ω and a capacitor of capacitance C.

The voltage across the LFG is $u_{AM} = U_m \sin \omega t$, ($\omega = 2\pi f$). The circuit thus carries an instantaneous current given by: $i = I_m \sin (\omega t + \varphi)$.

1) We denote by $u_C = u_{BN}$ the instantaneous voltage across the capacitor, by u_{AB} the voltage across the coil and by u_{NM} that across the resistor.

Show that:

- a) $\mathbf{i} = C \frac{du_C}{dt}$. b) \mathbf{u}_C may be written in the form: $\mathbf{u}_C = -\frac{\mathrm{Im}}{C\omega} \cos(\omega t + \varphi)$.
- c) $u_{AB} = L\omega \operatorname{Im} \cos(\omega t + \varphi)$.

2) The relation: $u_{AM} = u_{AB} + u_{BN} + u_{NM}$ is valid for any t. Show giving ω t a particular value, that:

- 3) An oscilloscope, conveniently connected, displays the variations, as a function of time of u_{AM} and u_{NM} on the channels (Y1) and (Y2) respectively. These variations are represented in the waveforms of figure 3.
 - a) Redraw figure 2 showing the connections of the oscilloscope
 - **b**) The waveform of u_{NM} represents the « image » of the current i. Why?
 - c) Find the value of f, knowing that the horizontal sensitivity is 5ms/division.
 - d) Determine the phase difference φ between i and u_{AM} .
- 4) Deduce the value of the capacitance C.
- 5) The frequency f is made to vary, keeping the same effective value of u_{AM} . It is noticed that, for a value f_1 of f, u_{AM} is in phase with i.
 - a) Give the name of the phenomenon that appears in the circuit.
 - **b**) Deduce, from what preceded, the relation among L, C and f_1 .

A- A bar magnet may be displaced along the axis of a coil whose terminals A and C are connected to a resistor of resistance R.

We approach the north pole of the magnet towards the face A of the coil (Fig.4). An induced current i is carried by the circuit.

- 1) Give the name of the physical phenomenon that is responsible for the passage of this current.
- 2) Give, with justification, the name of each face of the coil
- 3) The induced current passes from C to A through the resistor. Why?
- 4) Determine the sign of the voltage u_{AC} .
- **B-** A coil of inductance L = 0.02 H and of negligible resistance is connected in series with a resistor of resistance R across a generator G (Fig.5). The coil thus carries a current i that varies with time as shown in figure 6.
 - 1) Give the name of the physical phenomenon that takes place in the coil.
 - 2) Determine the voltage u_{AC} in each of the two intervals: [0; 0.04s] and [0.04s; 0.05s].

