

كلية التكنولوجي

Mathematics (BC), Time: 2 hours Entrance Exam: 16 September 2020

N.B.: Choose 3 exercises from the exercises 1,2,3,4,5 (exercise 6 is obligatory)

Exercise 1 (16 Pts)

A person deposits on the first of January of the year 2010, an amount of 4,200,000LL in a bank at an annual interest rate of 6% compounded yearly. The bank charges 36,000LL every year as an annual commission. Denote by S_n the capital the person will possess on the first of January the year 2010 + n. Let $S_0 =$ 4,200,000*LL*.

- 1. Verify that $S_1 = 4416000$.
- 2. Show that $S_{n+1} = 1.06S_n 36000$ for every natural number n.
- 3. Suppose $T_n = S_n 600000$.
 - a. Show that (T_n) is a geometric sequence whose first term T_0 and common ratio q are to be
 - b. Express T_n in terms of n and deduce that $S_n = 3600000 \times (1.06)^n + 600000$.
 - c. On the first of January of which year will the person possess for the first time a capital that exceeds 8000000LL?
- 4. Calculate $C = S_0 + S_1 + \cdots + S_7$ and deduce the interest earned by this person for the first 8 years.

Exercise 2 (16 Pts)

We consider the sequence (U_n) defined by : $U_1=12$ and $U_{n+1}=\frac{1}{3}U_n+5$ for all $n\geq 1$.

- 1. Calculate U_2 , U_3 and U_4 .
- 2. Let the sequence (V_n) defined, for any integer $n \ge 1$, by : $V_n = U_n \frac{15}{2}$.
 - a. Prove that the sequence (V_n) is a geometric sequence of common ration 1/3.
 - b. Express V_n as a function of n.
 - c. Determine the limit of the sequence (V_n) then deduce the limit of the sequence (U_n) .
- 3. Is it possible to determine *n* such that: a) $U_n \frac{15}{2} \le 10^{-6}$ b) $U_n \frac{15}{2} \ge 10^{6}$?

Exercise 3 (16 Pts)

The table below shows the price (in thousands LL) of m^3 of water in a city from the year 2002 till 2006:

Year	2002	2003	2004	2005	2006
Rank of year x_i	0	1	2	3	4
Price of m^3 of water y_i	2.64	2.76	2.81	2.95	3.39

- 1. Represent the scatter plot of points $(x_i; y_i)$ in an orthogonal system
- 2. Calculate the means \bar{x} and \bar{y} . Plot the average point G.
- 3. Write an equation of the regression line (D) of y in terms of x. Draw (D).
- 4. Estimate the price of m^3 of water in the year 2010.
- 5. Starting from which year will the price of m^3 of water exceeds 5000LL?

Exercise 4 (16 Pts)

Calculate each of the following integrals:

1.
$$\int (3x+2)^{10} dx$$
 2. $\int \frac{4+\ln x}{x} dx$

$$2. \int \frac{4+\ln x}{x} dx$$

3.
$$\int \frac{e^{2x}+x}{e^{2x}+x^2+1} dx$$
 4. $\int \frac{\ln x}{x^2} dx$

4.
$$\int \frac{\ln x}{x^2} dx$$
 (using integration by parts)

Exercise 5 (16 Pts)

Employees in a school are composed of 3 categories: administrative (A), teachers (T), and simple workers (E).

- 10% of the employees are administrative and 50% are teachers.
- 80% of the administrative are males (M) and 60% of teachers are females (F), and 67.5% of the workers are males.

We choose randomly one employee from this school.

- 1. Give the tree diagram of this problem and precise the different probability values on it.
- 2. Calculate the probability that the chosen employee is an administrative woman.
- 3. Find the probability that an employee selected at random is a female.
- 4. The chosen employee is a female. Calculate the probability that this employee is from the category (E).
- 5. The school managers decide to increase the salary of the employees as following:
 - 100 000 LL for each employee of (A);
 - 80 000 LL for each employee of (T) and in addition, 20 000 LL for each female of (T);
 - 60 000 LL for each employee of (E) and in addition, 20 000 LL for each male of (E).

Let X be the increase of the salaries. Demonstrate that X has 3 possible values and give the probability law of X.

Exercise 6 (32 Pts, obligatory)

Part A: Consider the function f defined over $I =]-\infty, +\infty[$ by $f(x) = \frac{1}{2}e^{2x} - 2e^x + x + 1.5$ and denote by (C) its representative curve in an orthonormal system.

- 1. Determine the limits of f(x) at $-\infty$ and $+\infty$.
- 2. Show that the straight line (d) of equation y = x + 1.5 is an asymptote to (C) at $-\infty$. Study the relative position of (C) with respect to (d).
- 3. Prove that $f'(x) = (e^x 1)^2$ and set up the table of variations of f.
- 4. Trace (d) and (C).
- 5. Show that the equation f(x) = 2 admits a unique solution $\alpha \in [1.2; 1.3[$.
- 6. Calculate the area bounded by (C), the line (d) and the lines of equations x = 0 and $x = \ln 4$.

Part B- Choose this Part OR Part C: (Take $\alpha=1.25$) let x be the number of articles, expressed in **thousands**, produced by a factory, and f(x) the total cost of production ($x \ge 0$), expressed in **millions** of LL. Each item is sold 1000LL.

- 7. For what value of x the cost is 2000000LL?
- 8. Find the revenue function R(x), in millions of LL.
- 9. Show that the profit P(x), expressed in millions of LL, is given by $P(x) = -\frac{1}{2}(e^x 1)(e^x 3)$.
- 10. For what values of x will the company realize a profit?
- 11. For what value of x will the company realize a maximum profit? Find this maximum.

Part C: Choose this Part OR Part B:

- 7. Show that f admits an inverse function f^{-1} and show that $(\ln 2 0.5; \ln 2)$ belongs to (C') the curve of f^{-1} .
- 8. Solve the equation f(x)-x=0 (you can set $e^x = y$).
- 9. Give the equation of the tangent (T) to (C) at the point of abscissa ln 2.
- 10. Study the concavity of f and show that (C) admits an inflexion point to be determined.

Good luck