LEBANESE UNIVERSITY

University Institute of Technology

الجامعة اللبنانية المعهد الجامعي للتكنولوجيا

Entrance Exam: September 11, 2014

Mathematics : ABC Duration: 2 H

Choose 3 from the exercises 1,2, 3, and 4

Exercise 1. (12 Pts)

Consider two urns U and V:

U contains five balls: three balls numbered 0 and two balls numbered 1.

V contains five balls numbered 1 to 5.

- A One ball is drawn randomly from each urn. Designate by X the random variable that is equal to the product of the two numbers that are marked on the two drawn balls.
 - 1) Prove that P(X = 0) is equal to 3/5.
 - 2) Determine the probability distribution of X.
- B In this part, the 10 balls that were in urns U and V are all placed in one urn W.

Two balls are drawn, simultaneously and randomly, from this urn W.

- 1) What is the number of possible draws of these 2 balls?
- Let q designate the product of the two numbers that are marked on the two drawn balls.
 - a) Show that the probability P(q = 0) is equal to 8/15.
 - b) Calculate the probability P(q < 4).

Exercise 2. (12 Pts)

The following table shows the salary change (y) of a worker expressed in hundreds of thousands of Lebanese pounds since 2010:

Date	1/7//2011	1/7/2012	1/7/2013	1/7/2014	1/7/2015	1/7/2016	1/7/2017	
Rank: x,	s _i 1 2 3		4	5	6	7		
Salary : v.	6,67	6,83	7.19	7,61	8,03	8,27	8,44	

- Represent graphically by scatter diagram the data in the above table in an orthogonal coordinate system (1 cm represents 1 row x-axis and 5 cm represent 100,000 LL y-axis. Start y-axis from 6).
- Give an equation for the regression line of y with respect x by the least squares method (round coefficients to 10⁻²). Draw this obtained line in the above graph.
- The shape of the scatter diagram suggests a modification of the salary trend from July 2014. For x≥4, we choose to adjust the regression line by the curve (C) of equation: y = a ln(x-3) + b where a and b are two real numbers.
- a. Determine the values of a and b such that the curve (C) passes through the points with coordinates (4, 7.61) and (7, 8.44) (round the real numbers a and b to 10⁻²).
- b. Draw the curve (C) on the same graph of question 1.
- 4. Sami is an employee having (y) salary. He wants to estimate (y) on July 1, 2019. What is the most favorable model?

Exercise 3. (12 Pts)

Let (u_n) a numeric sequence defined by: $u_1 = 12$ and $u_{n+1} = \frac{1}{3}u_n + 5$ for any integer $n \ge 1$

- Compute u₂, u₃ and u₄.
- Let the sequence (v_n), defined for n≥ 1, by : v_n = u_n 15/2
 - a. Prove that (v_n) is a geometric sequence with a common ratio 1/3
 - b. Write then vn in function of n
 - c. Compute the limit of (vn), and then deduce the limit of (un).
- Is it possible to determine n to have: a. u_n 15/2 ≤ 10⁻⁶? b. u_n 15/2 ≥ 10⁶?

Exercise 4. (12 Pts)

An apartment is valued at 100 ML (Million Lebanese Pounds) on 1/1/2014. The annual increase in the apartment value is 4% (supposed constant).

- What would the value of the apartment be on 1/1/2015? and on 1/1/2016?
- Let U₀ = 100 and U_n the apartment value for the year (2014+n).
 - a) Give the relation between Un+1 and Un and deduce that (Un) is a geometric sequence whose common ratio is to be determined.
 - b) Express U_n in term of n.
 - c) After how many years would the value of the apartment be doubled?
- 3. This apartment is rented 0.3ML / month. The rent is fixed. The owner has the option to sell the apartment for 100ML and to put this capital in the bank at an interest rate of 6.5%. b) 10 years? Which option is more profitable after: a) 5 years?

Exercices 5 and 6 are obligatory

Exercise 5. (24 Pts)

Consider the function f defined on $0: +\infty$ [by : $f(x) = 2x + \ln[2x/(2x+1)]$

Let (C) be the curve representing f in an orthonormal system (O; \vec{i} , \vec{j}).

Part A:

a- Calculate lim f(x) and deduce the asymptote line (D) to (C).

b- Verify that 2x/(2x+1) < 1 and deduce that (C) is below (D).

Calculate lim f(x) and deduce the asymptote to (C).

- Compute f'(x) and set up the table of variations of f.
- Draw (D) and (C).

Part B: A study of the market showed that:

- The quantity of objects produced by a factory is modeled by the function f.
- The quantity of objects demanded from this factory is modeled by the function g(x) = 2x + 1.
- f(x) is the quantity of objects produced by this factory expressed in thousands. x is expressed in weeks ($1 \le x \le 10$), and g(x) is the quantity of demanded objects in thousands.
- The «demand is satisfied on the date x» if f(x)≥g(x). Show that the demand is never satisfied.
- Assume that the total number of objects, in thousands, whose demand is not satisfied between

two dates n and m is given by $\int_{n}^{m} [g(x) - f(x)] dx.$

- a- Calculate the antiderivative H of the function g(x)-f(x).
- b- Compute the total number of objects whose demand is not satisfied: from n=1 to m=5.

Exercise 6. (10 Pts)

Consider a function f defined and derivable on the interval [-5, 6] which has an antiderivative over this interval. The table on the right gives f variations.

20	-5	- 3	-3		2		4		6
	3				4				. 0
f(x)	1	N		1		1		1	
		1.75	1				-2		

In each of the following questions, choose and justify the correct answer:

- 1 For 2 real numbers a and b where 2 <a <b <4 then:
 - a) f(a) > f(b)
- b) f(a) < f(b)
- c) f(a) and f(b) cannot be compared
- 2 The number of solutions of the equation f(x) = 1 is: a) 1

- $3 a) \int_{a}^{5} f(x) dx < 0$
- b) $\int_4^5 f(x)dx > 0$ c) The sign of $\int_4^5 f(x)dx$ is undetermined
- 4 Let g the function defined on [-5, 6] by g(x) = -1+x/2. The equation f(x) = g(x):
 - a) has no solution
- b) has one solution c) the number of solutions cannot be determined