

Entrance Exam (Engineering) Mathematics Exam

September 15, 2021

Time: 2 hours

N.B.: The questions 1, 2 and 3 are obligatory (choose one of the two questions 4 or 5)

Question 1. (8 points)

In the table below, only one answer among the proposed answers to each question is correct. Write the number of each question and give, **with justification**, the answer that corresponds to it.

Nº	Questions	Answers		
		a	b	с
1	For all real numbers x, we have:			
	$\ln\left(1+e^{-x}\right) - \ln\left(1+e^{x}\right) =$	0	-X	Х
2	$\lim_{x \to 1} \frac{e^x - e}{x - 1} =$	$+\infty$	1	е
3	Let f be the function given by:			
	$f(x) = \frac{\ln(x^2 + 1)}{\ln(x)}$]-∞;+∞[]0;1[∪]1;+∞[$]-\infty;0[\cup]0;+\infty[$
	The domain of definition of f is:			
4	If A and B are two events such that			
	P(A) = 0.4, P(B) = 0.8 and P(B/A) = 0.6	0.24	0.96	0.48
	then $P(A \cup B)$ equals to			

Question 2. (9 points)

Consider two urns U and V. The urn U contains two balls numbered 1 and 2 and the urn V contains four balls numbered 1, 2, 3 and 4.

- 1) One of the two urns U and V is randomly chosen, after which a ball is randomly selected from this urn. Consider the following events:
 - U: « the chosen urn is U ».
 - N: « the selected ball is numbered 1 ».
 - a-Calculate the probabilities P(N/U) and $P(N \cap U)$.

b- Show that
$$P(N) = \frac{3}{8}$$
 and deduce $P(U/N)$.

- 2) In this part, the six balls from the two urns U and V are placed in one urn W. Two balls are selected randomly and simultaneously from the urn W. Consider the following events:
 - E: « the two selected balls carry the same number ».
 - F: « the sum of numbers carried by the two selected balls is odd ».
 - a- Verify that $P(E) = \frac{2}{15}$.
 - b- Calculate P(F) and $P(F/\overline{E})$.

Question 3. (25 points)

<u>Part A</u>: Let g be the function defined over \mathbb{R} by: $g(x) = (1-x)e^{-x} + 1$.

- 1) a- Find $\lim_{x \to +\infty} g(x)$. b- Find $\lim_{x \to -\infty} g(x)$.
- 2) a- Calculate g'(x) and set up the table of variations of g.
 b- Deduce that g(x) > 0 for all x in ℝ.

<u>Part B</u>: We consider the function f defined over \mathbb{R} by: $f(x) = xe^{-x} + x$ and designate by (C) the representative curve of f in an orthonormal system (O; \vec{i} , \vec{j}).

- 1) Determine $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.
- 2) Show that the line (d) with equation y = x is an asymptote to (C).
- 3) Study the relative position of (C) with respect to (d).
- 4) a- Verify that f'(x) = g(x) and set up the table of variations of f. b- Show that $I\left(2, 2 + \frac{2}{e^2}\right)$ is an inflection point of (C).
 - c- Determine the point E of (C) where the tangent (T) to (C) is parallel to (d).
 - d- Draw (d), (T) and (C).
- 5) Calculate A, the area of the region bounded by (C), (d) and the two vertical lines with equations x = -1 and x = 1.

N.B.: Choose one of the two questions 4 or 5

Question 4. (8 points)

A factory manufactures three models of computers videos cards every day: model C1, model C2 and model C3. Electronic chips of the types: P1, P2 and P3 are installed inside each model with the following distribution:

Chip Model	C1	C2	C3
P1	5	2	7
P2	3	8	6
P3	3	4	5

In a certain day, we used: 200 chips P1, 240 chips P2 and 170 chips P3.

Let x, y and z be respectively the numbers of the manufactured cards C1, C2 and C3.

- 1) Write a system of three equations with three unknowns that described the above given.
- 2) By solving the previous system, deduce the number of cards manufactures from each model.

Question 5. (8 points)

In the complex plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points A, B, and M of

affixes -1, 4, Z respectively, and let M' be the point of affix z' so that $z' = \frac{z-4}{z+1}$ $(z \neq -1)$.

- 1) In the case where z = 1 + i, write z' in its algebraic form, and give its exponential form.
- 2) Determine the values of z for which z' = z.
- 3) a-Give a geometric interpretation of |z+1| and |z-4|.

b- Find, when |z'| = 1, the line on which the point M moves.